Powered By Blogger

Senin, 08 November 2010

GELOMBANG MEKANIK

Gelombang berdiri pada dawai
Gelombang Mekanik
Neh gambar Steve Vai, gitaris paling hebat sedunia – versi gurumuda. Dirimu bisa bermain gitar ? Atau sama seperti diriku, cuma bisa bengong menonton orang lain bermain gitar ? he2… Atau dirimu seorang gitaris? Wah, asyik neh punya teman seorang gitaris.. menarik sekali kalau kita amati orang yang sedang bermain gitar, khususnya melodi. Jari tangannya berpindah begitu cepat, pada saat yang sama petikannya pada senar menghasilkan alunan musik yang begitu indah… kalau musiknya bagus dan sesuai dengan selera, kita bisa sampai terhanyut… malah ada yang bisa berteriak histeris dan mengeluarkan air mata buaya atau dirimukah yang suka nonton konser sambil loncat sana loncat sini sambil teriak-teriak… hehe… pisss.
Nanti kalau dirimu bermain gitar atau menonton orang bermain gitar, jangan cuma lihat gitarisnya saja tapi perhatikan juga senar gitarnya… mengapa diameter senar gitar berbeda-beda ? diameter senar bass biasanya lebih besar dibandingkan dengan senar yang lain… ada senar yang tebal, ada senar yang tipis. Tuh tujuannya untuk apa ya ? ada lagi yang menarik… mengapa ketika kita menekan senar pada grid, nada yang dihasilkan bisa berubah ? hal yang sama terjadi ketika kita menyetel gitar. Mengapa ketika senar dikendurkan atau ditegangkan, nada yang dihasilkan berubah ? selamat belajar
Difraksi
Gelombang Mekanik
Duh, baru baca judulnya langsung ngantuk mau tidur saja rasanya. Istilahnya makin aneh saja… rumusnya sudah bertumpuk, istilahnya juga bikin lemas. Fisika oh fisika… jangan tidur dulu dunk, ne baru pengantar. Btw, dirimu suka politik-kah ? Difraksi tuh nama fraksi politik. Difraksi kemunduran bangsa, difraksi golongan nganggur.. wakakak. Ngelantur sampai ke dunia politik. Ok, kembali ke dunia kita, fisika!
Difraksi merupakan istilah yang digunakan untuk menjelaskan salah satu sifat gelombang yang cukup aneh Kok aneh sich ? yupz… Mungkin dirimu pernah mengalami atau mengamati peristiwa difraksi dalam kehidupan sehari-hari hanya tidak tahu kalau apa yang dialami atau diamati tersebut merupakan difraksi. Istilahnya tinggi n bikin lemas tapi apa yang dijelaskannya sangat dekat dengan kehidupan kita. Penasaran dengan difraksi-kah ? biasa saja tuh… dalam hati pasti penasaran juga. Selamat belajar ya, semoga difraksi semakin dekat di hatimu
Pembiasan gelombang (refraksi)
Gelombang Mekanik
Dirimu pernah jalan-jalan ke pantai-kah ? wah, masa hari gini belum Coba sekali-sekali main ke pantai.. . oya, biar seru ajak juga dengan pacar kesayangan. Asyik neh kalo pacaran di tepi pantai. Hiks2… Sambil duduk berdua memandang gulungan gelombang laut yang perlahan-lahan menuju tepi pantai, ditemani hembusan angin sepoi2 kering yang bikin ngantuk.. belum lagi pemandangan sunset di sore hari. Duh, pantai serasa milik berdua. Maunya tinggal di pantai saja ya, biar kalau ada tsunami bisa stress
Kalau dirimu ingin bermain ke pantai, nanti perhatikan secara saksama gulungan gelombang laut yang bergerak dari tengah laut menuju tepi pantai. Ketika masih di tengah laut, gelombang laut biasanya bergerak ke berbagai arah. Tetapi ketika semakin mendekati garis pantai, seolah-olah ada yang memerintahkan gelombang laut untuk menyesuaikan arahnya dengan garis pantai. Ketika semakin dekat dengan garis pantai, gelombang laut semakin sejajar dengan garis pantai. Pada saat pecah, gelombang laut tepat sejajar dengan garis pantai. Yang saya maksudkan dengan garis pantai di sini adalah perbatasan antara laut dan hamparan pasir. Mengapa gelombang laut bisa aneh seperti itu ya ?
Pemantulan gelombang (refleksi)
Gelombang Mekanik
Sebelumnya kita sudah membahas salah satu sifat gelombang, yakni interferensi. Kali ini kita berkenalan dengan pemantulan (refleksi). Mengenai pembiasan (refraksi) dan difraksi akan dibahas kemudian.
Pemantulan gelombang biasanya terjadi ketika gelombang yang sedang bergentayangan dari satu tempat ke tempat lain menabrak suatu penghalang. Dirimu mungkin pernah melihat gelombang air laut yang terpantul dari sisi kapal atau batu karang; gelombang air yang terpantul dari sisi kolam renang atau bak penampung. Masih sangat banyak contoh pemantulan gelombang yang bisa kita temui dalam kehidupan sehari… sisanya dipikirkan sendiri ya oya, dirimu mungkin pernah mendengar pantulan suara sendiri ketika berteriak histeris di tengah hutan ? hiks2.. piss… tumben neh maen ke hutan sendiri Pantulan suara atau istilah kerennya “gema” juga merupakan salah satu contoh peristiwa pemantulan gelombang. Bedanya gema merupakan peristiwa pemantulan gelombang bunyi. Gelombang bunyi termasuk gelombang longitudinal, sedangkan gelombang air merupakan gabungan dari gelombang transversal dan longitudinal.
Gerak Vertikal
Kinematika
Gerak vertikal ke bawah
Gerak vertikal ke bawah sangat mirip dengan gerak jatuh bebas, cuma beda tipis… kalau pada gerak jatuh bebas, kecepatan awal benda, vo = 0, maka pada gerak vertikal ke bawah, kecepatan awal (vo) benda tidak sama dengan nol. Contohnya begini… kalau buah mangga dengan sendirinya terlepas dari tangkainya dan jatuh ke tanah, maka buah mangga tersebut melakukan Gerak Jatuh Bebas. Tapi kalau buah mangga anda petik lalu anda lemparkan ke bawah, maka buah mangga melakukan gerak Vertikal Ke bawah. Atau contoh lain… anggap saja anda sedang memegang batu… nah, kalau batu itu anda lepaskan, maka batu tersebut mengalami gerak Jatuh bebas.. tapi kalau batu anda lemparkan ke bawah, maka batu mengalami Gerak Vertikal Ke bawah. Pahami konsep ini baik-baik, karena jika tidak dirimu akan kebingungan dengan rumusnya……..
Gerak Melingkar Beraturan (GMB)
Kinematika
Ketika sebuah benda bergerak membentuk suatu lingkaran dengan laju tetap maka benda tersebut dikatakan melakukan gerak melingkar beraturan alias GMB.
Dapatkah kita mengatakan bahwa GMB merupakan gerakan yang memiliki kecepatan linear tetap ? Misalnya sebuah benda melakukan Gerak Melingkar Beraturan, seperti yang tampak pada gambar di bawah. Arah putaran benda searah dengan putaran jarum jam. bagaimana dengan vektor kecepatannya ? seperti yang terlihat pada gambar, arah kecepatan linear/tangensial di titik A, B dan C berbeda. Dengan demikian kecepatan pada GMB selalu berubah (ingat perbedaan antara kelajuan dan kecepatan, kelajuan adalah besaran skalar sedangkan kecepatan adalah besaran vektor yang memiliki besar/nilai dan arah) sehingga kita tidak dapat mengatakan kecepatan linear pada GMB tetap.
Besaran gerak melingkar
Kinematika
Pengantar
Setiap hari kita selalu melihat sepeda motor, mobil, pesawat atau kendaraan beroda lainnya. Apa yang terjadi seandainya kendaraan tersebut tidak mempunyai roda ? yang pasti kendaraan tersebut tidak akan bergerak. Sepeda motor atau mobil dapat berpindah tempat dengan mudah karena rodanya berputar, demikian juga pesawat terbang tidak akan lepas landas jika terdapat kerusakan fungsi roda. Putaran roda merupakan salah satu contoh gerak melingkar yang selalu kita temui dalam kehidupan sehari-hari, walaupun sering luput dari perhatian kita. Permainan gasing merupakan contoh lainnya. Sangat banyak gerakan benda yang berbentuk melingkar yang dapat kita amati dalam kehidupan sehari-hari, termasuk gerakan mobil/sepeda motor pada tikungan jalan, gerakan planet kesayangan kita (bumi), planet-planet lainnya, satelit, bintang dan benda angkasa yang lain. Anda dapat menyebutnya satu persatu.
Setiap benda yang bergerak membentuk suatu lingkaran dikatakan melakukan gerakan melingkar. Sebelum membahas lebih jauh mengenai gerak melingkar, terlebih dahulu kita pelajari besaran-besaran fisis dalam gerak melingkar.
Gerak Parabola alias Gerak Peluru
Kinematika

Pada pokok bahasan Gerak Lurus, baik GLB, GLBB dan GJB, kita telah membahas gerak benda dalam satu dimensi, ditinjau dari perpindahan, kecepatan dan percepatan. Kali ini kita mempelajari gerak dua dimensi di dekat permukaan bumi yang sering kita jumpai dalam kehidupan sehari-hari.
Pernakah anda menonton pertandingan sepak bola ? mudah-mudahan pernah walaupun hanya melalui Televisi. Gerakan bola yang ditendang oleh para pemain sepak bola kadang berbentuk melengkung. Mengapa bola bergerak dengan cara demikian ?
Gerak Jatuh Bebas (GJB)
Kinematika

Dalam kehidupan sehari-hari, kita sering melihat atau menemui benda yang mengalami gerak jatuh bebas, misalnya gerak buah yang jatuh dari pohon, gerak benda yang dijatuhkan dari ketinggian tertentu atau bahkan gerak manusia yang jatuh dari atap rumah (he2….). mengapa benda mengalami gerak jatuh bebas ? Gerak Jatuh Bebas alias GJB merupakan salah satu contoh umum dari Gerak Lurus Berubah Beraturan. Apa hubungannya ? silahkan dibaca terus, selamat belajar jatuh bebas, eh selamat belajar pokok bahasan Gerak Jatuh Bebas. Semoga Tuhan Yang Maha Kuasa selalu menyertai anda, sehingga tidak pusing, masuk angin atau mual-mual selama proses pembelajaran ini
Gaya semu, Gaya sentrifugal
Dinamika
Pernah menumpang mobil ? masa belum Ketika kita menumpang mobil yang sedang bergerak di tikungan, biasanya tubuh kita terhempas ke kiri jika mobil menikung ke kanan atau sebaliknya tubuh kita terhempas ke kanan jika mobil menikung ke kiri. Aneh ya, mengapa tubuh kita bisa terhempas ? fenomena ini tidak hanya terjadi ketika kita menumpang mobil saja tetapi juga ketika kita menumpang setiap benda yang bergerak melingkar.
Gaya Sentripetal
Dinamika
Setiap benda yang bergerak membentuk lintasan lingkaran harus tetap diberikan gaya agar benda tersebut terus berputar. Anda dapat membuktikannya dengan mengikat sebuah benda (sebaiknya berbentuk bulat atau segiempat) pada salah satu ujung tali. Setelah itu putarlah tali tersebut, sehingga benda tersebut ikut berputar. Jika anda menghentikan putaran, maka benda tersebut perlahan-lahan berhenti. Hal dikarenakan tidak ada gaya yang diberikan. Agar benda tetap berputar maka harus diberikan gaya secara terus menerus, yang dalam hal ini adalah tangan anda yang memutar tali.
Hukum Newton pada benda-benda yang dihubungkan dengan tali – Katrol
Dinamika
Pada pembahasan mengenai hukum Newton pada bidang datar dan bidang miring, kita telah menganalisis komponen-komponen gaya yang bekerja pada benda dan yang mempengaruhi gerakan benda pada permukaan bidang datar dan bidang miring. Kali ini kita mencoba mempelajari penerapan hukum Newton pada benda-benda yang dihubungkan dengan tali, misalnya benda yang digantung pada katrol. Sebelum membahas lebih jauh, terlebih dahulu kita berkenalan dengan konsep tegangan tali. Tegangan tali akan selalu dijumpai dalam setiap analisis mengenai komponen-komponen gaya yang bekerja pada benda yang dihubungkan dengan tali. Oleh karena itu, alangkah baiknya jika kosep tegangan tali dipahami secara baik dan benar sehingga memudahkan dirimu dalam memahami penjelasan selanjutnya. Selamat belajar ya, mudah-mudahan dirimu tidak tegang seperti tali
Hukum Newton pada bidang datar dan bidang miring
Dinamika
Hukum-hukum Newton yang telah kita pelajari sebelumnya dapat digunakan untuk memecahkan berbagai persoalan mekanika. Sebagai contoh, kita dapat menentukan percepatan gerak sebuah benda dengan mengetahui gaya-gaya yang bekerja pada benda tersebut. Atau sebaliknya, kita juga bisa menentukan gaya-gaya yang bekerja pada sebuah benda yang bergerak, apabila diketahui percepatannya. Nah, pada kesempatan ini kita akan mempelajari lebih jauh penerapan Hukum Newton bidang datar dan bidang miring, terutama berkaitan dengan benda-benda yang bergerak akibat adanya gaya tetap yang bekerja padanya. Met belajar ya, semoga setelah belajar pembahasan ini, dirimu dapat menyelesaikan berbagai persoalan mekanika menggunakan Hukum Newton….
Hukum Kepler
Dinamika
Pengantar
Sebelum kita mempelajari hukum Kepler secara lebih mendalam, terlebih dahulu kita kenang kembali kisah masa lalu yang mengantar Paman Kepler merumuskan hukumnya yang terkenal sampai di seluruh pelosok negeri, bahkan sampai ke seluruh penjuru ruangan kelas XI IPA. Tulisan ini juga menyinggung masa lalu ilmu astronomi, sebuah kisah perkembangan ilmu pengetahuan yang selalu menuai pertentangan di tahap awal perkembangannya.
Sejarah Panjang
Awal perkembangan ilmu astronomi modern dimulai oleh Purbach (1423-1461) di universitas Wina serta lebih khusus lagi oleh muridnya Yohanes muller (1436-1476). Johanes Muller pergi ke Italia khusus untuk belajar karya asli Ptolemeus tentang astronomi bersama temannya Walther (1430-1504).
Daya
Usaha dan Energi
Pada pokok bahasan mengenai usaha dan energi, energi potensial dan energi kinetik serta pembahasan Hukum Kekekalan Energi, kita telah mempelajari konsep usaha tanpa memperhitungkan besaran waktu. Misalnya ketika mengangkat sebuah batu hingga ketinggian tertentu, kita membutuhkan sejumlah usaha. Batu yang kita angkat dengan sejumlah usaha tentu saja memerlukan selang waktu tertentu untuk berpindah dari kedudukan awal ke kedudukan akhir. Batu yang diangkat secara perlahan-lahan pasti memiliki waktu tempuh yang lebih lama dibandingkan dengan batu yang diangkat dengan cepat. Pada kesempatan ini kita akan mempelajari pokok bahasan Daya, sebuah besaran fisika yang menyatakan hubungan antara usaha dan waktu. Selamat belajar, semoga sukses…..
Dalam ilmu fisika, daya diartikan sebagai laju dilakukannya usaha atau perbandingan antara usaha dengan selang waktu dilakukannya usaha. Dalam kaitan dengan energi, daya diartikan sebagai laju perubahan energi. Sedangkan Daya rata-rata didefinisikan sebagai perbandingan usaha total yang dilakukan dengan selang waktu total yang dibutuhkan untuk melakukan usaha. Secara matematis, hubungan antara daya, usaha dan waktu dirumuskan sebagai berikut :
Penerapan Hukum Kekekalan Energi Mekanik pada berbagai jenis gerakan
Usaha dan Energi
Pada pokok bahasan Hukum Kekekalan Energi Mekanik, telah dijelaskan apa dan bagaimana hukum kekekalan energi mekanik. Sekarang, mari kita pelajari aplikasi Hukum Kekekalan Energi Mekanik pada berbagai jenis gerakan benda. Semoga setelah mempelajari materi ini, dirimu dapat memahami secara lebih mendalam konsep dan penerapan Hukum Kekekalan Energi Mekanik. Apabila dirimu belum memahami dengan baik dan benar konsep Hukum Kekekalan Energi Mekanik, sebaiknya segera meluncur ke TKP dan pelajari kembali pembahasannya yang telah GuruMuda publish pada blog ini. Sekarang, tarik napas pendek 1000 kali, karena perang gerilya segera kita mulai…..
Hukum Kekekalan Energi Mekanik pada Gerak Jatuh Bebas
Suatu contoh sederhana dari Hukum Kekekalan Energi Mekanik adalah ketika sebuah benda melakukan Gerak Jatuh Bangun, eh… Gerak Jatuh Bebas (GJB).
Misalnya kita tinjau sebuah batu yang dijatuhkan dari ketinggian tertentu. Pada analisis mengenai Gerak Jatuh Bebas, hambatan udara diabaikan, sehingga pada batu hanya bekerja gaya berat (gaya berat merupakan gaya gravitasi yang bekerja pada benda, di mana arahnya selalu tegak lurus menuju permukaan bumi).
Hukum Kekekalan Energi Mekanik
Usaha dan Energi
< ![endif]--> < ! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} -->
Konsep Hukum Kekekalan Energi
Dirimu pasti sangat pasti sering mendengar istilah ini, Hukum Kekekalan Energi (HKE). Tetapi apakah dirimu memahami dengan baik dan benar apa yang dimaksudkan dengan hukum Kekekalan Energi Mekanik ? jika kebingungan berlanjut, silahkan pelajari materi ini sampai dirimu memahaminya.
Dalam kehidupan kita sehari-hari terdapat banyak jenis energi. Selain energi potensial dan energi kinetik pada benda-benda biasa (skala makroskopis), terdapat juga bentuk energi lain. Ada energi listrik, energi panas, energi litsrik, energi kimia yang tersimpan dalam makanan dan bahan bakar, energi nuklir, dan kawan-kawan…. Pokoknya banyak banget setelah muncul teori atom, dikatakan bahwa bentuk energi lain tersebut (energi listrik, energi kimia, dkk) merupakan energi kinetik atau energi potensial pada tingkat atom (pada skala mikroskopis – disebut mikro karena atom tu kecil banget…). cukup sampai di sini ya penjelasannya mengenai energi potensial atau energi kinetik pada tingkat atom… intinya bentuk energi lain tersebut merupakan energi potensial atau energi kinetik pada skala atomik… jika penasaran, bisa request melalui kolom komentar. Nanti akan anda pelajari pada pelajaran fisika di tingkat yang lebih tinggi.
Usaha dan energi
Usaha dan Energi
Dalam kehidupan sehari-hari dirimu pasti sering mendengar atau menggunakan kata “usaha” dan “energi”. Kata “usaha” yang sering kita gunakan dalam kehidupan sehari-hari memiliki makna yang berbeda dengan pengertian usaha dalam fisika. Pada kesempitan ini kita akan belajar pokok bahasan usaha dan energi. Pokok bahasan Usaha dan Energi yang telah anda pelajari di SMP masih bersifat kualitatif dan mungkin sekarang dirimu sudah melupakan semuanya . Oleh karena itu gurumuda mencoba membantu dirimu memahami kembali (syukur kalo masih diingat) konsep Usaha dan Energi secara lebih mendalam dan tentu saja disertai juga dengan penjelasan kuantitatif (ada rumusnya). Akhirnya, semoga dirimu tidak berkecil hati, apalagi sampai kecewa dan putus asa karena ada rumus. Pahamilah dengan baik dan benar konsep Usaha dan Energi yang dijelaskan, maka dirimu tidak akan meringis ketika menatap rumus… selamat belajar ya, semoga sukses sampai di tujuan

Energi potensial dan energi kinetik
Usaha dan Energi
Energi Potensial
< ![endif]--> < ! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} -->
Energi potensial merupakan energi yang dihubungkan dengan gaya-gaya yang bergantung pada posisi atau wujud benda dan lingkungannya. Banyak sekali contoh energi potensial dalam kehidupan kita. Karet ketapel yang kita regangkan memiliki energi potensial. Karet ketapel dapat melontarkan batu karena adanya energi potensial pada karet yang diregangkan. Demikian juga busur yang ditarik oleh pemanah dapat menggerakan anak panah, karena terdapat energi potensial pada busur yang diregangkan. Contoh lain adaah pegas yang ditekan atau diregangkan. Energi potensial pada tiga contoh ini disebut senergi potensial elastik. Energi kimia pada makanan yang kita makan atau energi kimia pada bahan bakar juga termasuk energi potensial. Ketika makanan di makan atau bahan bakar mengalami pembakaran, baru energi kimia yang terdapat pada makanan atau bahan bakar tersebut dapat dimanfaatkan. Energi magnet juga termasuk energi potensial. Ketika kita memegang sesuatu yang terbuat dari besi di dekat magnet, pada benda tersebut sebenarnya bekerja energi potensial magnet. Ketika kita melepaskan benda yang kita pegang (paku, misalnya), dalam waktu singkat paku tersebut bergerak menuju magnet dan menempel pada magnet. Perlu dipahami bahwa paku memiliki energi potensial magnet ketika berada jarak tertentu dari magnet; ketika menempel pada magnet, energi potensial bernilai nol.
Tumbukan
Impuls dan Momentum
Dalam kehidupan sehari-hari, kita biasa menyaksikan benda-benda saling bertumbukan. Banyak kecelakaan yang terjadi di jalan raya sebagiannya disebabkan karena tabrakan (tumbukan) antara dua kendaraan, baik antara sepeda motor dengan sepeda motor, mobil dengan mobil maupun antara sepeda motor dengan mobil. Demikian juga dengan kereta api atau kendaraan lainnya. Hidup kita tidak terlepas dari adanya tumbukan. Ketika bola sepak ditendang David Beckham, pada saat itu juga terjadi tumbukan antara bola sepak dengan kaki Abang Beckham. Tampa tumbukan, permainan billiard tidak akan pernah ada. Demikian juga dengan permainan kelereng kesukaanmu ketika masih kecil. Masih banyak contoh lainnya yang dapat anda temui dalam kehidupan sehari-hari. Ayo dipikirkan…
Hukum Kekekalan Momentum
Impuls dan Momentum
Pada pokok bahasan Momentum dan Impuls, kita telah berkenalan dengan konsep momentum serta pengaruh momentum benda pada peristiwa tumbukan. Pada kesempatan ini kita akan meninjau momentum benda ketika dua buah benda saling bertumbukan. Ingat ya, momentum merupakan hasil kali antara massa benda dengan kecepatan gerak benda tersebut. Jadi momentum suatu benda selalu dihubungkan dengan massa dan kecepatan benda. Kita tidak bisa meninjau momentum suatu benda hanya berdasarkan massa atau kecepatannya saja. Pahami baik-baik konsep ini ya….
Pernahkah anda menonton permainan biliard ? lebih baik lagi jika dirimu adalah pemain biliard tuh gambarnya di samping kiri… biasanya pada permainan billiard, kita berusaha untuk memasukan bola ke dalam lubang. Bola yang menjadi target biasanya diam. Jika anda perhatikan secara cermat, kecepatan bola biliard yang disodok menuju bola biliard target menjadi berkurang setelah kedua bola biliard bertumbukan.
Momentum dan Impuls
Impuls dan Momentum
Pernahkah dirimu menyaksikan tabrakan antara dua kendaraan di jalan ? kalo belum, silahkan mencoba sstt… jangan diikuti. Berbahaya bagi kesehatan jiwa dan raga-mu apa yang terjadi ketika dua kendaraan bertabrakan ? mungkin pengendara atau penumpangnya babak belur dan langsung digiring ke rumah sakit. Kondisi mobil atau sepeda motor mungkin hancur berantakan… Kalau kita tinjau dari ilmu fisika, fatal atau tidaknya tabrakan antara kedua kendaraan ditentukan oleh momentum kendaraan tersebut. masa sich ? serius… terus momentum tu apa ? sebelum berkenalan dengan momentum, pahami penjelasan gurumuda berikut ini terlebih dahulu.
Dalam ilmu fisika terdapat dua jenis momentum yakni momentum linear dan momentum sudut. Kadang-kadang momentum linear disingkat momentum. Dirimu jangan bingun ketika membaca buku pelajaran fisika yang hanya menulis “momentum”. Yang dimaksudkan buku itu adalah momentum linear.
Gerak Rotasi Dipercepat Beraturan
Kinematika Rotasi
Dalam Gerak Lurus Berubah Beraturan (GLBB), kita telah mempelajari gerakan benda pada lintasan lurus, di mana benda tersebut mengalami perubahan kecepatan secara teratur. Dengan kata lain, benda yang bergerak lurus mengalami percepatan tetap. Kita juga telah membahas persamaan-persamaan yang menyatakan hubungan antara besaran-besaran dalam GLBB. Persamaan-persamaan itu diturunkan dari besaran-besaran Gerak Lurus, dengan menganggap percepatan benda tetap.
Jika dalam GLBB kita menganalisis gerakan benda pada lintasan lurus, maka pada kesempatan ini yang kita tinjau bukan gerak lurus tetapi gerak rotasi, khususnya berkaitan dengan rotasi benda tegar. Kasusnya sama, yakni benda mengalami percepatan tetap. Kalau dalam GLBB, besaran yang tetap adalah percepatan linear, maka dalam gerak rotasi, besaran yang tetap adalah percepatan sudut. Kalau dalam GLBB yang berubah secara teratur adalah kecepatan linear, maka besaran yang berubah secara teratur dalam gerak rotasi adalah kecepatan sudut.
Btw, punya tisu gak ? wah, siapin tisu dulu buat ngelap keringat dunk… he2… pisss… santai saja. Cuma satu halaman kok. Met belajar ya
Besaran-besaran sudut
Kinematika Rotasi
Dalam pokok bahasan Gerak Lurus, kita mengenal beberapa besaran, seperti kecepatan, perpindahan dan percepatan. Nah, dalam gerak rotasi, kita akan berkenalan dengan beberapa besaran sudut, antara lain kecepatan sudut, percepatan sudut dan perpindahan sudut. Di sebut sudut karena dalam gerak rotasi setiap partikel pada benda tegar bergerak dalam lingkaran dan menempuh sudut tertentu. Besaran-besaran ini seringkali disebut juga dengan julukan kecepatan angular, percepatan angular dan perpindahan angular. Angular = sudut, seperti linear = lurus. Jangan pake bingung. Mengenai besaran-besaran ini akan kita kupas tuntas satu persatu. Selamat bersenang-senang ya kok bersenang-senang sich. Berkerut-kerut kali
• Ada 2 Komentar
Pengantar Rotasi Benda Tegar
Kinematika Rotasi
Pada bagian kinematika kita sudah belajar mengenai gerak lurus. Kali ini kita akan mempelajari gerak rotasi, khususnya berkaitan dengan benda tegar. Ada dua istilah baru pada topik ini, yakni gerak rotasi dan benda tegar.
Sebuah benda dikatakan melakukan gerakan rotasi jika semua titik pada benda bergerak mengitari sumbu alias poros benda tersebut. Lebih mudahnya bayangkanlah gerakan kipas angin atau gerakan Compact Disc dalam CD/DVD room.
Terus benda tegar tuh maksudnya apa ? Yang dimaksudkan dengan benda tegar adalah benda yang bentuknya selalu tetap alias tidak berubah, di mana posisi setiap partikel pada benda tersebut relative selalu sama antara satu dengan yang lain. Sebenarnya benda dalam kehidupan sehari-hari jauh lebih rumit. Bentuk benda dapat berubah ketika dikenai gaya. Perlu diingat bahwa Benda tegar merupakan sebuah pendekatan ideal saja, di mana kita menganggap bentuk dan ukuran benda tidak berubah.
Momentum Sudut
Dinamika Rotasi
Akhirnya, tinggal selangkah lagi dinamika rotasi beres. Oya, semester kemarin dah belajar momentum dan impuls khan ? dirimu masih ingat tidak ? wah gawat kalau dah lupa… yawdah, nanti gurumuda jelaskan intisarinya lagi, biar dirimu paham. Met belajar ya… semoga momentum sudut semakin dekat di hatimu
Momentum
Sebelum kita berkenalan dengan momentum sudut, terlebih dahulu kita pahami kembali konsep momentum (momentum = momentum linear). Momentum alias momentum linear adalah momentum yang dimiliki oleh benda-benda yang bergerak pada lintasan lurus. Dalam kehidupan sehari-hari, tidak semua benda selalu bergerak sepanjang lintasan lurus. Lintasan lurus itu hanya model yang kita pakai untuk membantu kita menganalisis gerakan benda. Jadi kita menganggap setiap benda seolah-olah selalu bergerak sepanjang lintasan atau jalan yang lurus. Begitu
Energi Kinetik Rotasi
Dinamika Rotasi
Dirimu pernah mengendarai sepeda motor-kah ? wah, gurumuda ini… ya pernah lah, masa hari gini belum. Asyik lagi, apalagi kebut2an di jalan sama…. Sama siapa ya ? he2… ada deh kalau kebut2an dengan sepeda ontel, pernah belum ? haha… jadul. Masa hari gini pake sepeda… Asyik kok kalo pake sepeda ontel, apalagi di yogya. Malam minggu bisa nongkrong di malioboro bareng teman2 sesama penunggang ontel, sambil cuci mata. Sedap… neh mau belajar fisika pa ngobrol sepeda ontel sich gurumuda ? Emang dirimu pingin belajar fisika gitu ? ihh, keren… pingin saingan sama almahrum eyang Einstein-kah ?… yawdah, langsung saja ya. ntar kelamaan, keburu basi.. Ok, tancap gas
Hukum II Newton untuk Gerak Rotasi
Dinamika Rotasi
Kok almahrum eyang newton muncul lagi sich ? yupz…. Eyang newton menguasai darat, udara dan laut. He2…. Hukum II Newton yang sudah kita pelajari baru membahas hubungan antara gaya, massa dan percepatan benda untuk kasus gerak lurus (gerak lurus = gerakan benda pada lintasan lurus). Hubungan antara gaya (penyebab gerakan benda), massa benda dan percepatan benda dalam gerak lurus dinyatakan dengan persamaan : F = ma. Mudah2an dirimu belum melupakannya… sebaiknya pelajari lagi materi hukum II Newton, biar lebih nyambung dengan penjelasan gurumuda. Btw, Hukum II Newton merupakan hukum tentang gerak, sehingga bisa diterapkan untuk gerak rotasi juga. Langsung saja ya
Momen Inersia
Dinamika Rotasi
Pada pembahasan mengenai Torsi, gurumuda sudah menjelaskan pengaruh torsi terhadap gerakan benda yang berotasi. semakin besar torsi, semakin besar pengaruhnya terhadap gerakan benda yang berotasi. dalam hal ini, semakin besar torsi, semakin besar perubahan kecepatan sudut yang dialami benda. Perubahan kecepatan sudut = percepatan sudut. Jadi kita bisa mengatakan bahwa torsi sebanding alias berbanding lurus dengan percepatan sudut benda. Perlu diketahui bahwa benda yang berotasi juga memiliki massa.
Dalam gerak lurus, massa berpengaruh terhadap gerakan benda. Massa bisa diartikan sebagai kemampuan suatu benda untuk mempertahankan kecepatan geraknya. Apabila benda sudah bergerak lurus dengan kecepatan tertentu, benda sulit dihentikan jika massa benda itu besar. Sebuah truk gandeng yang sedang bergerak lebih sulit dihentikan dibandingkan dengan sebuah taxi. Sebaliknya jika benda sedang diam (kecepatan = 0), benda tersebut juga sulit digerakan jika massanya besar. Misalnya jika kita menendang bola tenis meja dan bola sepak dengan gaya yang sama, maka tentu saja bola sepak akan bergerak lebih lambat.
Torsi alias momen gaya
Dinamika Rotasi
Dalam pokok bahasan hukum II newton, kita belajar bahwa sebuah benda bisa bergerak lurus dengan percepatan tertentu jika diberikan gaya. Misalnya terdapat sebuah buku yang terletak di atas meja. Mula-mula buku itu diam (kecepatan = 0). Setelah diberikan gaya dorong, buku itu bergerak dengan kecepatan tertentu. Buku mengalami perubahan kecepatan (dari diam menjadi bergerak) akibat adanya gaya. Perubahan kecepatan = percepatan. Kita bisa mengatakan bahwa buku mengalami percepatan akibat adanya gaya. Semakin besar gaya yang diberikan, semakin besar percepatan gerak buku itu. Jadi dalam gerak lurus, gaya sebanding dengan percepatan linear benda.
Bagaimana-kah dengan gerak rotasi
Viskositas
Fluida Statis
Pernah lihat minyak pelumas-kah ? oli motor… yang cowok pasti tahu, soalnya tiap hari kebut2an di jalan. He2…. Coba bandingkan oli dengan air. Manakah yang lebih kental ? Ah, gurumuda ini. Cuma gitu kok nanya… oli lebih kental dunk. Ich, pinter… sekarang giliran cewe. Kalau yang cewe khan dekat dengan ibu, jadi pasti tahu minyak goreng. Wah, kalau anak mami, pasti cuma bisa rebus mi sedap… piss…. Mana yang lebih cair, minyak goreng lebih kental atau es teh ? es teh-lah… anak sd juga bisa jawab. Ich, pinter2 ya, pelajar jaman sekarang… Hehe… btw, pada kesempatan ini kita akan mempelajari kekentalan suatu fluida, baik zat gas maupun zat cair. Istilah kerennya viskositas. Viskositas = ukuran kekentalan fluida. Met belajar ya… semoga tiba dengan selamat di tempat tujuan
Kapilaritas
Fluida Statis
Pernah melihat lilin ? mudah-mudahan pernah menggunakannya. Salah satu fenomena yang menarik dapat kita saksikan ketika lilin sedang bernyala. Bagian bawah dari sumbu lilin yang terbakar biasanya selalu basah oleh leleh lilin (di bagian sumbu). Adanya leleh lilin pada sumbu membuat lilin bisa bernyala dalam waktu yang lama. Btw, apa yang menyebabkan leleh lilin bisa bergerak ke atas menuju sumbu lilin yang terbakar ? fenomena yang sama bisa kita amati pada lampu minyak. Lampu minyak merupakan salah satu sumber penerangan ketika belum ada lampu listrik. Mungkin saat ini masih digunakan. Lampu minyak terdiri dari wadah yang berisi bahan bakar (biasanya minyak tanah) dan sumbu. Sebagian sumbu dicelupkan dalam wadah yang berisi minyak tanah, sedangkan sebagian lagi dibungkus dalam pipa kecil. Pada ujung atas pipa tersebut, disisakan sebagian sumbu. Jika kita ingin menggunakan lampu minyak, maka sumbu yang terletak di ujung atas pipa kecil tersebut harus dibakar. Sumbu tersebut bisa menyala dalam waktu yang lama karena minyak tanah yang berada dalam wadah merembes ke atas, hingga mencapai ujung sumbu yang terbakar. Aneh ya, kok minyak tanah bisa merembes ke atas ?
Banyak hal menarik dalam kehidupan kita yang mirip dengan fenomena yang terjadi pada lilin dan lampu minyak. Seolah-olah cairan tersebut mempunyai kaki sehingga bisa bergerak ke atas. Apakah dirimu bisa menjelaskannya secara ilmiah
Tegangan Permukaan
Fluida Statis
Pernahkah dirimu bermain gelembung sabun ? aneh ya, gelembung sabun kok bisa berbentuk bulat.. lucu & asyik… bisa ditiup lagi. Terus setelah terbang, gelembung sabun pecah. Wah, seru ya permainan masa kecil. Btw, mengapa ya gelembung sabun bisa berbentuk bulat ? Ngomong soal bulat, ada juga yang mirip gelembung sabun. Yang ini banyak dijumpai di pagi hari… coba dirimu bangun di pagi hari, terus perhatikan dedaunan yang ada di sekitar rumah. Amati tetesan embun yang menempel di dedaunan. Aneh khan, tetes embun juga kadang bentuknya bulat. Mengapa ya bisa seperti itu ? atau kalau dirimu malas bangun pagi, coba perhatikan tetesan air yang keluar dari kran air. Krannya ditutup dahulu. Setelah itu, putar kran perlahan-lahan hingga yang keluar dari mulut kran adalah tetes-tetas air… kalau diamati, air yang menetes dari mulut kran mula-mula menggumpal (bulat). Lama kelamaan bulatannya semakin besar lalu pecah dan jatuh ke lantai. Apa yang membuat air menjadi seperti itu ? semuanya bisa dijelaskan dengan ilmu fisika… fisika lagi, fisika lagi… mumet dah. Hehe… ingin tahu mengapa demikian ? mari kita bertarung dengan Tegangan Permukaan. Setelah mempelajari pokok bahasan Tegangan Permukaan, dirimu dengan mudah menjelaskan fenomena tersebut
Prinsip Archimedes
Fluida Statis
Pernahkah dirimu melihat kapal laut ? jika belum pernah melihat kapal laut secara langsung, mudah-mudahan dirimu pernah melihat kapal laut melalui televisi (Tuh ada gambar kapal di samping). Coba bayangkan. Kapal yang massanya sangat besar tidak tenggelam, sedangkan sebuah batu yang ukurannya kecil dan terasa ringan bisa tenggelam. Aneh khan ? Mengapa bisa demikian ?
Jawabannya sangat mudah jika dirimu memahami konsep pengapungan dan prinsip Archimedes. Pada kesempatan ini gurumuda ingin membimbing dirimu untuk memahami apa sesungguhnya prinsip archimedes. Selamat belajar ya… Semoga setelah mempelajari pokok bahasan ini dirimu dengan mudah menjelaskan semua persoalan berkaitan dengan prinsip archimedes, termasuk alasan mengapa kapal yang massanya besar tidak tenggelam.
Gaya Apung
Sebelum membahas prinsip Archimedes lebih jauh, gurumuda ingin mengajak dirimu untuk melakukan percobaan kecil-kecilan berikut ini. Silahkan cari sebuah batu yang ukurannya agak besar, lalu angkat batu tersebut. Apakah batu tersebut terasa berat ? nah, sekarang coba masukan batu ke dalam air (masukan batu ke dalam air laut atau air kolam atau air yang ada dalam sebuah wadah, misalnya ember). Kali ini batu diangkat dalam air. Bagaimana berat batu tersebut ? apakah batu terasa lebih ringan ketika diangkat dalam air atau ketika tidak diangkat dalam air ? agar bisa menjawab pertanyaan gurumuda dengan benar, sebaiknya dirimu melakukan percobaan tersebut terlebih dahulu
Prinsip Pascal
Fluida Statis
Pernahkah dirimu jalan-jalan ke bengkel ? Jangan jauh-jauh ke bengkel, mungkin dirimu pernah melihat mobil mogok di jalan karena ban dalam mobil tersebut kempis alias pecah ?… nah, ketika roda mobil mengalami kerusakan maka om sopir atau kondektur harus menggantinya dengan roda yang lain. Atau kadang mobil harus digiring ke bengkel, soalnya yang nyetir pake dasi. Agar roda mobil yang rusak bisa diganti maka digunakan bantuan dongkrak hidrolis. Tahukah dirimu bagaimana prinsip kerja dongkrak hidrolis ? mobil yang begitu berat bisa diangkat dengan mudah. Aneh bin ajaib. Hehe… semuanya karena fisika . Selain itu, ketika dirimu menumpang mobil atau angkot, coba amati bagaimana kendaraan bisa direm. Kalau pingin iseng, silahkan bertanya kepada om sopir. Om, kok mobilnya bisa berhenti ya ? prinsip kerja rem bagaimana-kah ? mudah2an dirimu tidak diomelin oleh om sopir.
Ok, kembali ke laptop. Bagaimana prinsip kerja dongkrak/ lift hidrolik yang biasa digunakan untuk mengangkat mobil ? bagaimana pula prinsip kerja rem hidrolis ketika digunakan untuk mengurangi laju mobil ? mudah-mudahan dirimu kebingungan dan tidak mengetahui jawabannya… hehe… ingin tahu mengapa ? selamat belajar bersama om Pascal. Semoga setelah mempelajari pokok bahasan ini, dirimu semakin dekat di hati om Pascal serta om sopir dkk…
Penerapan Prinsip dan Persamaan Bernoulli
Fluida Dinamis
Sebelumnya, kita sudah belajar mengenai Prinsip dan Persamaan Bernoulli. Kali ini kita akan melihat penerapan prinsip dan persamaan Bernoulli dalam kehidupan sehari-hari.
Teorema Torriceli
Salah satu penggunaan persamaan Bernoulli adalah menghitung kecepatan zat cair yang keluar dari dasar sebuah wadah (lihat gambar di bawah)
Kita terapkan persamaan Bernoulli pada titik 1 (permukaan wadah) dan titik 2 (permukaan lubang). Karena diameter kran/lubang pada dasar wadah jauh lebih kecil dari diameter wadah, maka kecepatan zat cair di permukaan wadah dianggap nol (v1 = 0). Permukaan wadah dan permukaan lubang/kran terbuka sehingga tekanannya sama dengan tekanan atmosfir (P1 = P2). Dengan demikian, persamaan Bernoulli untuk kasus ini adalah :
Prinsip dan persamaan Bernoulli
Fluida Dinamis
Dirimu bisa mengendarai sepeda motor khan ? ketika kita mengendarai sepeda motor agak kencang, baju yang kita pakai biasanya mengembung ke belakang. Atau kalau dirimu belum bisa mengendarai sepeda motor, coba perhatikan ayah/ibu/teman2 yang mengendarai sepeda motor. Bagian belakang baju yang dipakai biasanya kembung ke belakang kalau sepeda motornya melaju dengan kencang. Kok bisa ya ? bukan cuma itu… kadang kalau angin bertiup kencang, pintu rumah bisa ketutup sendiri. Padahal anginnya bertiup di luar rumah, sedangkan daun pintu ada di dalam rumah.
Dirimu bingung-kah ? Tuh mah gampang, bisa dijelaskan dengan mudah asal dirimu paham prinsip om Bernoulli. Om Daniel Bernoulli (1700-1782) menemukan sebuah prinsip yang bisa digunakan untuk menjelaskan keanehan di atas. Btw, prinsip Bernoulli tu apa ? terus apa bedanya dengan persamaan Bernoulli ? Sekarang bersiap-siaplah bergulat dengan om Bernoulli… wah, Om Bernoulli ini bikin pelajaran fisika tambah banyak saja… hehe
Persamaan Kontinuitas
Fluida Dinamis
Sebelum kita belajar tentang persamaan kontinuitas, gurumuda ingin mengajak dirimu untuk bermain dengan air. Hehe… di rumah punya kran air khan ? kalau tidak punya, bisa pinjam punya tetangga. Bilang saja, pak/bu, pinjam kran airnya ya, sebentar saja.. pliss… demi kemajuan ilmu fisika. Terus merenggek saja gpp, nanti juga diberi coba dirimu buka kran air perlahan-lahan sambil memperhatikan laju air yang keluar dari mulut kran. Setelah kran tidak bisa diputar lagi, sumbat sebagian mulut kran dengan tanganmu. Sekarang bandingkan, manakah laju aliran air yang lebih besar. Ketika sebagian mulut kran disumbat atau tidak disumbat ? kalau dirimu punya slang yang biasa dipakai untuk menyiram bunga, coba alirkan air melalui slang tersebut. Nah, silahkan tutup sebagian mulut selang dengan tangan atau jarimu. Semakin banyak bagian mulut selang yang ditutup, semakin deras air menyembur keluar (laju aliran air makin besar). Sebaliknya, jika mulut slang tidak ditutup, aliran air menjadi seperti semula (kurang deras). Aneh khan ? mengapa bisa demikian ? agar bisa memahami “keanehan” ini, silahkan pelajari pokok bahasan ini dengan penuh semangat. Setelah mempelajari persamaan kontinuitas, dirimu bisa menjelaskannya dengan mudah
Pengantar fluida dinamis
Fluida Dinamis
Sebelumnya kita sudah bergulat dengan Fluida Statis. Nah, kali ini kita akan bergulat dengan sahabat fluida statis, yakni Fluida Dinamis. Kalau dalam pokok bahasan Fluida Statis kita belajar mengenai fluida diam, maka dalam fluida dinamis kita akan mempelajari fluida yang bergerak. Fluida itu sendiri merupakan zat yang dapat mengalir (zat cair & gas), tapi maksud gurumuda, dalam fluida statis, kita mempelajari fluida ketika fluida tersebut sedang diam alias tidak bergerak. Sedangkan dalam fluida dinamis, kita menganalisis fluida ketika fluida tersebut bergerak.
Aliran fluida secara umum bisa kita bedakan menjadi dua macam, yakni aliran lurus alias laminar dan aliran turbulen. Aliran lurus bisa kita sebut sebagai aliran mulus, karena setiap partikel fluida yang mengalir tidak saling berpotongan. Salah satu contoh aliran laminar adalah naiknya asap dari ujung rokok yang terbakar. Mula-mula asap naik secara teratur (mulus), beberapa saat kemudian asap sudah tidak bergerak secara teratur lagi tetapi berubah menjadi aliran turbulen. Aliran turbulen ditandai dengan adanya linkaran-lingkaran kecil dan menyerupai pusaran dan kerap disebut sebagai arus eddy. Contoh lain dari aliran turbulen adalah pusaran air. Aliran turbulen menyerap energi yang sangat besar. jadi dirimu jangan heran kalau badai datang melanda, semua yang dilalui badai tersebut hancur berantakan. Yang gurumuda maksudkan adaah badai yang membentuk pusaran alias putting beliung. Aliran turbulen ini sangat sulit dihitung
Radiasi
Suhu Dan Kalor
Pernah mengenakan pakaian berwarna hitam di siang hari yang panas ? Kalau belum, silahkan mencoba… Kalau tidak punya pakaian berwarna hitam, pinjam saja punya tetangga Bilang saja buat percobaan fisika, pasti tidak diberi. hehe… Biar keren, kali ini dirimu tampil penuh percaya diri dengan setelan hitam-hitam. Rasanya bagaimanakah ? wah, mau mati saja rasanya… Sudah bikin gerah, dikirain penampakan lagi. Hiks2… Aneh ya, masa cuma pakai pakaian berwarna hitam tubuh bisa kepanasan. Apa hubungannya ya…
Btw, biasanya pagi hari atau sore hari rasanya tidak terlalu panas. Tapi kalau siang hari rasanya panas sekali… Kata ibu, waktu eyang butut masih hidup memang sudah begitu… Esok kalau harga bbm naik lagi mungkin berubah kali
Konveksi
Suhu Dan Kalor
Dirimu pernah bermain ke pantai-kah ? Sayang kalau belum. Coba main ke pantai kalau ada waktu. Sekali2 perlu rekreasi, apalagi tiap hari sumpek dengan kehidupan di kota yang hiruk pikuk dan bikin sebel. Udaranya sudah panas, asap kendaraan bertebaran di mana-mana, suara bising lagi bikin kuping juga ikut2an bising
Sambil memandang gulungan gelombang laut yang bergerak perlahan-lahan menuju ke tepi pantai, hembusan angin sepoi-sepoi bikin tubuh terasa segar. Belum lagi pemandangan sunset di sore hari… Apalagi sedang berduaan sama pacar kesayangan… wah, asyik sekali. Hidup serasa milik berdua
Konduksi
Suhu Dan Kalor
Jika kita perhatikan pengendara sepeda motor di jalan raya, biasanya kebanyakan dari antara mereka menggunakan jaket atau sweater. Kayanya bukan cuma mereka… Kita juga biasa menggunakan jaket jika hendak kebut2an di jalan, terutama perjalanan yang ditempuh cukup jauh. Tuh tujuannya untuk apa ya ? Omong soal jaket, ketika udara cukup dingin kita juga biasa menggunakan jaket, kaki harus dibungkus dengan kaos kaki segala, tidur pun harus ditemani selimut yang bisa bikin sesak napas… mengapa harus demikian-kah ?
Btw, katanya kalau kita tidur di lantai ubin atau lantai keramik tanpa menggunakan kasur atau selimut, katanya bisa cepat sakit. Apa hubungannya ya… Dirimu bingung-kah ? biasa saja tuh… Met belajar ya…. Baca saja sampai selesai maka dirimu akan mendapat pencerahan
Kalor, Kalor Jenis & Kalor Laten
Suhu Dan Kalor
kalau orang yang gemuk ingin mengurangi lemak, maka ia harus banyak berolahraga, misalnya lari-lari di malam hari atau berenang di kolam renang. Pokoknya olahraga-lah…. Kenapa ya, si gemuk di suruh harus banyak olahraga. Semuanya kok mau jadi atlet….
Btw, dirimu suka makan khan ? ya, iyalah… paling hobi kalau soal makan. Pagi ngemil, sore pun ngemil… Kalau beli biskuit, dirimu biasa baca2 tulisan yang ada di bungkusan tidak ? Protein 30 kkal. lemak 20 kkal. karbohidrat 40 kkal. besi 10 kkal. batu 15 kkal. pasir 90 kkal… tuh maksudnya apa ya ? Hiks2… Bingungkah ? Met belajar ya…
Anomali air
Suhu Dan Kalor
Pernah minum teh botol, coca cola botol dkk ? Coba perhatikan botolnya…. bandingkan dengan botol bir bintang atau botol anggur orang tua. Kenapa ya, botol coca cola atau botol teh kok lebih tebal dari botol bir bintang atau botol anggur orang tua. Biasanya botol minuman dingin lebih tebal dari botol minuman panas tuh tujuannya untuk apa ya ? bingung-kah ? hiks2….
Biar dirimu paham, coba lakukan percobaan kecil2an berikut ini. Siapkan sebuah botol bir bintang atau botol anggur orang tua. Kalau tidak ada, gunakan saja botol lain, asalkan botolnya tidak tebal alias tipis. Di rumah ada kulkas ? coba masukan air ke dalam botol lalu simpan botol di dalam kulkas. Tutup pintu kulkas dan biarkan sampai air yang ada di dalam botol membeku…. setelah itu, segera kabur dari rumah biar tidak diomelin ayah atau ibu Botolnya bisa pecah kalau air membeku… masa sich ? buktikan saja sendiri kalau tidak percaya…
Hukum ketiga termodinamika
Termodinamika
Hukum ketiga termodinamika merupakan hukum fisika yang jablai Kurang populer karena jarang dibelai… Daripada hukum ketiga termodinamika menjadi jablai, alangkah baiknya jika gurumuda bahas saja, biar dirimu bisa membelainya…
Hukum ketiga termodinamika mengatakan bahwa mencapai suhu nol mutlak (0 K) adalah hal yang tidak mungkin terjadi. Untuk mengetahui alasan mengapa suhu nol mutlak tidak bisa dicapai, silahkan pelajari lagi materi teori kinetik gas… ulasannya sudah disertakan dalam pokok bahasan tersebut. Download saja di halaman ebook gratis…
Entropi (Pernyataan umum hukum kedua termodinamika)
Termodinamika
Pengantar
Dalam postingan sebelumnya kita sudah mempelajari beberapa pernyataan khusus hukum kedua termodinamika. Perlu diketahui bahwa pernyataan khusus tersebut hanya bisa menjelaskan beberapa proses ireversibel saja. Pernyataan om Clausius hanya menjelaskan perpindahan kalor dan kaitannya dengan prinsip kerja mesin pendingin. Sebaliknya pernyataan om Kelvin dan om Planck berkaitan dengan prinsip kerja mesin kalor. Walaupun tampaknya berbeda, tetapi pada dasarnya kedua pernyataan ini berhubungan dengan perpindahan kalor. Btw, masih banyak proses ireversibel lainnya tidak bisa dijelaskan menggunakan kedua pernyataan tersebut. Setelah mencium tanah, buah mangga yang lezat dan mengundang selera tidak pernah meluncur ke atas lagi. Buku yang kita dorong tidak pernah bergerak kembali ke posisinya semula. Ketika adikmu yang sangat nakal menjatuhkan gelas ke lantai hingga pecah, serpihan-serpihan gelas yang tercecer di lantai tidak pernah ngumpul lagi dan membentuk gelas hingga utuh seperti semula… Apalagi ya… masih banyak atuh. mikirin sendiri ya… hiks2… pisss…
Hukum kedua termodinamika (Pernyataan khusus)
Termodinamika
Pengantar
Katanya stok minyak bumi dalam perut bumi sekarang tinggal sedikit, karenanya kita diminta untuk menghemat energi. Aneh ya… Menurut hukum pertama termodinamika, dalam suatu sistem tertutup (alam semesta kita termasuk sistem tertutup), jumlah energi total selalu kekal. Energi dapat berubah bentuk dan berpindah dari satu benda ke benda yang lain, tetapi jumlah energi total selalu tetap. Kalau energi selalu kekal, mengapa kita harus menghemat energi ?
Hukum pertama termodinamika : pernyataan kekekalan energi
Termodinamika
Dalam pembahasan sebelumnya gurumuda sudah menjelaskan secara panjang pendek mengenai Hukum Pertama Termodinamika. Konon katanya, hukum pertama termodinamika merupakan pernyataan hukum kekekalan energi. Aneh ya, hukum pertama termodinamika khan hanya membahas hubungan antara kalor (Q), kerja (W) dan perubahan energi dalam (delta U). Lalu mengapa bisa disebut sebagai pernyataan hukum kekekalan energi ?
Hukum pertama termodinamika
Termodinamika
Pengantar
Pernah memanaskan air ? Kalau kita panaskan air menggunakan wadah seperti panci, misalnya, biasanya setelah air mendidih, tutup panci bisa bergerak sendiri. Tutup panci bisa bergerak karena ditendang oleh uap yang lagi kepanasan dalam panci… Ingin bebas, katanya. Sudah bosan hidup di penjara… Ada lagi contoh yang mirip. Dirimu pernah ngemil popcorn ? Mudah2an sudah… Kalau belum, minta saja di toko terdekat. Ssttt… jangan lupa bawa uang receh secukupnya, biar dirimu tidak diomelin. Btw, tahu cara membuat popcorn ? Biasanya popcorn dimasukkan ke dalam wadah lalu dipanaskan. Setelah kepanasan, biji popcorn berdisco ria dengan teman-temannya dan mendorong penutup wadah. Aneh ya, cuma dipanasi dengan nyala api, biji popcorn dalam wadah meletup dan loncat-loncat sendiri. Saking senangnya, penutup wadah jadi korban kenakalan mereka mengapa bisa terjadi seperti itu
Resonansi
Gelombang Bunyi, Gelombang Mekanik, Getaran - Osilasi
Resonansi
Pernah melihat atau menggunakan garputala ? Ada gambar garputala di samping… garputala merupakan alat yang hanya menghasilkan satu frekuensi saja. Atau dalam istilah musik, garputala merupakan alat yang hanya menghasilkan satu nada saja. Biasanya digunakan oleh musikus untuk mencari nada atau untuk menyetel alat musik seperti senar gitar atau piano. Btw, mengapa garputala punya dua tangkai, mengapa tidak satu tangkai saja ? kalau satu tangkai nanti jadi tusuk gigi he2… Jika kita menggetarkan garputala lalu mendekatkannya dengan senar gitar maka senar gitar yang mempunyai nada yang sama dengan nada garputala juga akan ikut bergetar. Mengapa senar gitar juga ikut bergetar ? omong soal gitar, mengapa harus ada badan gitar, mengapa tidak cukup senar dan gagang tempat menautkan senar saja ? Selamat belajar resonansi Gelombang berdiri pada dawai
Gelombang Mekanik
Neh gambar Steve Vai, gitaris paling hebat sedunia – versi gurumuda. Dirimu bisa bermain gitar ? Atau sama seperti diriku, cuma bisa bengong menonton orang lain bermain gitar ? he2… Atau dirimu seorang gitaris? Wah, asyik neh punya teman seorang gitaris.. menarik sekali kalau kita amati orang yang sedang bermain gitar, khususnya melodi. Jari tangannya berpindah begitu cepat, pada saat yang sama petikannya pada senar menghasilkan alunan musik yang begitu indah… kalau musiknya bagus dan sesuai dengan selera, kita bisa sampai terhanyut… malah ada yang bisa berteriak histeris dan mengeluarkan air mata buaya atau dirimukah yang suka nonton konser sambil loncat sana loncat sini sambil teriak-teriak… hehe… pisss.
Nanti kalau dirimu bermain gitar atau menonton orang bermain gitar, jangan cuma lihat gitarisnya saja tapi perhatikan juga senar gitarnya… mengapa diameter senar gitar berbeda-beda ? diameter senar bass biasanya lebih besar dibandingkan dengan senar yang lain… ada senar yang tebal, ada senar yang tipis. Tuh tujuannya untuk apa ya ? ada lagi yang menarik… mengapa ketika kita menekan senar pada grid, nada yang dihasilkan bisa berubah ? hal yang sama terjadi ketika kita menyetel gitar. Mengapa ketika senar dikendurkan atau ditegangkan, nada yang dihasilkan berubah ? selamat belajar…
Difraksi
Gelombang Mekanik
Duh, baru baca judulnya langsung ngantuk mau tidur saja rasanya. Istilahnya makin aneh saja… rumusnya sudah bertumpuk, istilahnya juga bikin lemas. Fisika oh fisika… jangan tidur dulu dunk, ne baru pengantar. Btw, dirimu suka politik-kah ? Difraksi tuh nama fraksi politik. Difraksi kemunduran bangsa, difraksi golongan nganggur.. wakakak. Ngelantur sampai ke dunia politik. Ok, kembali ke dunia kita, fisika!
Difraksi merupakan istilah yang digunakan untuk menjelaskan salah satu sifat gelombang yang cukup aneh Kok aneh sich ? yupz… Mungkin dirimu pernah mengalami atau mengamati peristiwa difraksi dalam kehidupan sehari-hari hanya tidak tahu kalau apa yang dialami atau diamati tersebut merupakan difraksi. Istilahnya tinggi n bikin lemas tapi apa yang dijelaskannya sangat dekat dengan kehidupan kita. Penasaran dengan difraksi-kah ? biasa saja tuh… dalam hati pasti penasaran juga. Selamat belajar ya, semoga difraksi semakin dekat di hatimu…
Pembiasan gelombang (refraksi)
Gelombang Mekanik
Dirimu pernah jalan-jalan ke pantai-kah ? wah, masa hari gini belum Coba sekali-sekali main ke pantai.. . oya, biar seru ajak juga dengan pacar kesayangan. Asyik neh kalo pacaran di tepi pantai. Hiks2… Sambil duduk berdua memandang gulungan gelombang laut yang perlahan-lahan menuju tepi pantai, ditemani hembusan angin sepoi2 kering yang bikin ngantuk.. belum lagi pemandangan sunset di sore hari. Duh, pantai serasa milik berdua. Maunya tinggal di pantai saja ya, biar kalau ada tsunami bisa stress
Kalau dirimu ingin bermain ke pantai, nanti perhatikan secara saksama gulungan gelombang laut yang bergerak dari tengah laut menuju tepi pantai. Ketika masih di tengah laut, gelombang laut biasanya bergerak ke berbagai arah. Tetapi ketika semakin mendekati garis pantai, seolah-olah ada yang memerintahkan gelombang laut untuk menyesuaikan arahnya dengan garis pantai. Ketika semakin dekat dengan garis pantai, gelombang laut semakin sejajar dengan garis pantai. Pada saat pecah, gelombang laut tepat sejajar dengan garis pantai. Yang saya maksudkan dengan garis pantai di sini adalah perbatasan antara laut dan hamparan pasir. Mengapa gelombang laut bisa aneh seperti itu ya ?
Pemantulan gelombang (refleksi)
Gelombang Mekanik
Sebelumnya kita sudah membahas salah satu sifat gelombang, yakni interferensi. Kali ini kita berkenalan dengan pemantulan (refleksi). Mengenai pembiasan (refraksi) dan difraksi akan dibahas kemudian.
Pemantulan gelombang biasanya terjadi ketika gelombang yang sedang bergentayangan dari satu tempat ke tempat lain menabrak suatu penghalang. Dirimu mungkin pernah melihat gelombang air laut yang terpantul dari sisi kapal atau batu karang; gelombang air yang terpantul dari sisi kolam renang atau bak penampung. Masih sangat banyak contoh pemantulan gelombang yang bisa kita temui dalam kehidupan sehari… sisanya dipikirkan sendiri ya oya, dirimu mungkin pernah mendengar pantulan suara sendiri ketika berteriak histeris di tengah hutan ? hiks2.. piss… tumben neh maen ke hutan sendiri Pantulan suara atau istilah kerennya “gema” juga merupakan salah satu contoh peristiwa pemantulan gelombang. Bedanya gema merupakan peristiwa pemantulan gelombang bunyi. Gelombang bunyi termasuk gelombang longitudinal, sedangkan gelombang air merupakan gabungan dari gelombang transversal dan longitudinal.
Gelombang kejut, Ledakan sonik
Gelombang Bunyi
VIVAnews – Suara keras pesawat sukhoi milik TNI AU saat melakukan latihan sempat menggegerkan masyarakat, dan bahkan memecahkan kaca jendela salah satu rumah makan di Makassar, Kamis malam. Karena panik, pemilik rumah menghubungi polisi, 15 menit kemudian polisi yang dipimpin Kapolresta Makassar Timur, AKBP Mansyur datang dan langsung melakukan pemeriksaan dari serpihan kaca yang pecah. Kepanikan juga terjadi di Mall Panakkukang, salah satu Mall terbesar di Makassar. Hanya beberapa saat kejadian, baik pengunjung maupun pemilik gerai berlarian keluar toko. And Irsan, salah seorang pengunjung mall tersebut mengatakan, lantai mall tersebut sempat bergetar. “Saya bersama keluarga langsung lari keluar mall untuk menyelamatkan diri,” ujarnya. Sumber
Bunyi pesawat Sukhoi bisa sedahsyat itu ? Lantai mall saja bergetar, bagaimana duNK dengan lantai pesawat Sukhoi… wah, mudah-mudahan om pilotnya tidak ikut2an berhamburan keluar dari pesawat
Efek Doppler
Gelombang Bunyi
Pengantar
Pernah nonton balap sepeda motor GP ? belum ? sama dunk… diriku juga belum pernah nonton secara langsung. Kalau nonton GP di TV sich pernah pernah nonton GP di TV ? wah, kalau dirimu suka kebut2an di jalan, pasti sering nonton… asyik ya kalau nonton balap motor. Balap di tikungan tajam kelihatan santai sekali… padahal motornya sedang ngebut… caranya bagaimana ya… dirimu bisa balap seperti itu ?
Gelombang bunyi berdiri
Gelombang Bunyi
Judulnya garing ya, kirain gelombang bunyi jongkok … Dalam pokok bahasan gelombang berdiri pada dawai, gurumuda sudah membahas mengenai gelombang berdiri transversal yang terjadi pada dawai. Nah, kali ini gurumuda membahas mengenai gelombang berdiri longitudinal yang terjadi pada kolom udara. Bingun dengan istilah kolom udara ? pernah lihat pipa, suling, terompet dkk ? Kolom udara tuh udara yang berada dalam rongga pipa, rongga suling dkk….
Resonansi
Gelombang Bunyi, Gelombang Mekanik, Getaran - Osilasi
Pengantar Resonansi
Pernah melihat atau menggunakan garputala ? Ada gambar garputala di samping… garputala merupakan alat yang hanya menghasilkan satu frekuensi saja. Atau dalam istilah musik, garputala merupakan alat yang hanya menghasilkan satu nada saja. Biasanya digunakan oleh musikus untuk mencari nada atau untuk menyetel alat musik seperti senar gitar atau piano. Btw, mengapa garputala punya dua tangkai, mengapa tidak satu tangkai saja ? kalau satu tangkai nanti jadi tusuk gigi he2… Jika kita menggetarkan garputala lalu mendekatkannya dengan senar gitar maka senar gitar yang mempunyai nada yang sama dengan nada garputala juga akan ikut bergetar. Mengapa senar gitar juga ikut bergetar ? omong soal gitar, mengapa harus ada badan gitar, mengapa tidak cukup senar dan gagang tempat menautkan senar saja ? Selamat belajar resonansi
Layangan
• Tuesday Jun 1,2010 03:47 PM
• By san
• In Gelombang Bunyi
Pengantar Layangan gelombang bunyi
Sebelumnya sudah dijelaskan mengenai interferensi gelombang bunyi. Kali ini kita berkenalan dengan salah satu jenis interferensi gelombang bunyi, yakni layangan. Bukan mainan layangan ya..
Banyak penerapan konsep layangan dalam kehidupan sehari-hari, salah satunya dalam bidang musik. Penyetel alat musik, misalnya gitar atau piano, biasanya memanfaatkan layangan untuk mengetahui apakah senar sudah disetel dengan benar atau belum
kenapa langit berwarna biru? pada dasarnya langit tidak berwarna , namun karena efek dari matahari maka langit pun berubah menjadi kebiruan.Matahari memancarkan gelombang cahaya dengan memancarkan frekuensi tertentu. Bagian dari frekuensi tersebut merupakan frekuensi cahaya tampak yang dapat ditangkap oleh mata manusia, Jika spektrum cahaya matahari yang mengenai mata kita masih terdiri atas seluruh spektrum cahaya tampak, matahari akan terlihat putih dan spektrum cahaya tampak ini akan menyinari atmosfer bumi.

Atmosfer bumi terdiri atas gas-gas yang mengandung bermacam-macam partikel dan unsur. Dua unsur pertama yang terkandung dalam atmosfer bumi adalah oksigen dan nitrogen. Kedua unsur ini sangat efektif untuk manghamburkan spektrum cahaya tampak yang mempunyai frekuensi tinggi atau panjang gelombang yang pendek. Akibatnya, atmosfer bumi dengan mudah menghamburkan spektrum warna biru, ungu, dan nila yang mempunyai frekuensi tinggi. Mata manusia lebih sensitif terhadap warna biru dari pada warna nila dan ungu sehingga langit berwarna biru.
Sementara itu, hanya ada sedikit cahaya tampak dari matahari dengan frekuensi lebih rendah yang dihamburkan oleh atmosfer bumi. Cahaya dengan warna kuning, merah dan jingga memiliki frekuensi yang lebih rendah dibanding dengan warna yang lainnya. Warna tersebut akan menembus atmosfer bumi dan terlihat oleh mata kita. Tetapi, intensitas ketiga warna tersebut tidak sama dan warna kuning lebih mendominasi sehingga matahari terlihat berwarna kuning sampai dengan siang hari. Tampilan cahya matahari yang terlihat oleh mata kita berubah dari waktu ke waktu dan berwarna jingga saat matahari akan terbenam. Mengapa ?

Karena saat matahari berada di horizon (saat terbit dan terbenam), lintasan yang ditempuh cahaya matahari semakin jauh sehingga jumlah kuning yang dihamburkan relatif lebih besar daripada warna jingga. Hal ini mengakibatkan intensitas warna jingga yang sampai di mata kita lebih dominan sehingga matahari terbenam terlihat jingga

Tidak ada komentar:

Posting Komentar